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Abstract—A prototype hardware/software system has been
developed and applied to the control of single wafer chemical-
mechanical polishing (CMP) processes. The control methodology
consists of experimental design to build response surface and
linearized control models of the process, and the use of feedback
control to change recipe parameters (machine settings) on a lot
by lot basis. Acceptable regression models for a single wafer
polishing tool and process were constructed for average removal
rate and nonuniformity which are calculated based on film
thickness measurement at nine points on 8 in blanket oxide
wafers. For control, an exponentially weighted moving average
model adaptation strategy was used, coupled to multivariate
recipe generation incorporating user weights on the inputs and
outputs, bounds on the input ranges, and discrete quantization
in the machine settings. We found that this strategy successfully
compensated for substantial drift in the uncontrolled tool’s re-
moval rate. It was also found that the equipment model generated
during the experimental design was surprisingly robust; the same
model was effective across more than one CMP tool, and over
a several month period. We believe that the same methodology
is applicable to patterned oxide wafers; work is in progress to
demonstrate patterned wafer control, to improve the control,
communication, and diagnosis components of the system, and to
integrate real-time information into the run by run control of the
process.

Index Terms—CMP, GCC, planarization.

I. INTRODUCTION

T HE chemical-mechanical polishing (CMP) process is
of critical importance to current and future generation

interconnect for integrated circuit technologies. In addition to
CMP process and equipment development [1], the modeling of
CMP processes is an active area of research, including work
on wafer scale dependencies [2], feature scale models [3], as
well as behavior of the equipment over many runs [4], [5]. The
challenges posed by CMP for both sensor and control research
are also becoming better known [6], [7]. While a good deal
of research into run by run control methods has been reported
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(see [8] for a review), relatively little practical experience with
CMP control exists [7], [9], [10]. In this paper, we present the
application of an integrated hardware/software control system
utilizing run by run methods to overcome common CMP
process and equipment difficulties.

In Section II, we briefly review CMP process and equip-
ment fundamentals, and identify the difficulties accommodated
through run by run process control. Section III presents the
overall control system architecture, and describes the gradual
mode run by run control strategy. The polynomial response
surface and linear control models developed for CMP are
discussed in Section IV. In Section V, we present a pair of
simulation and fabrication experiments that demonstrate the
importance and effectiveness of model adaptive run by run
control. Finally, in Section VI we draw conclusions based
on these experiments, and highlight areas where additional
research and demonstration are needed.

II. THE CMP PROCESS

In the CMP process, the wafer is affixed to a wafer carrier
(via back-pressure), and pressed face-down on a rotating platen
holding a polishing pad, as illustrated in Fig. 1. A slurry with
abrasive material (e.g., silica particles of sizes from 10 nm–200

m) held in suspension is dripped onto the rotating platen
during polish. The carrier and platen rotate at variable speeds,
typically on the order of 30 rpm. Tools differ in the number
of wafers that may be simultaneously polished; single-wafer,
dual-wafer, and other multi-headed tools exist.

The process removes material at the surface of the wafer
through a combination of mechanical and chemical action.
A typical process goal is to achieve “global” planarization
(across tens of mm) by preferential removal of “high” material
on the wafer. The planarization of dielectric (silicon dioxide)
layers between multilevel metallization steps is one common
application. Metal planarization is also often performed.

The control of CMP is chronically poor, arising from poor
understanding of the process, degradation (wear-out) of polish-
ing pads, inconsistency of the slurry, variation in pad physical
properties, and the lack ofin-situ sensors. Because the process
includes mechanical abrasion of the surface, the polishing
pad wears rapidly. Concurrent or sequential “conditioning” is
usually employed whereby the abrasive surface of the pad
is restored (either by mechanical damage to the surface or
removal of a thin surface layer), but the lifetime of a pad
remains on the order of a few hundred wafers. In addition
to difficulties achieving a reliable film thickness (because of
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Fig. 1. Chemical-mechanical polish tool configuration.

Fig. 2. Measurement sites.

changing removal rates over time), the within-wafer uniformity
of the polish is difficult to achieve and maintain. Differences
between polish rates at the center and edge of the wafer (i.e.,
“bulls-eye patterns”) may arise due to wafer asymmetry (e.g.,
wafer flat), nonconstant relative pad velocity from the edge to
the center, nonuniform slurry and by-product transport under
the wafer, wafer bowing due to pressure, or machine drift in
time of any of these parameters. As a result of these problems,
it is conventional practice to use a number of send-ahead or
dummy wafers to condition and/or calibrate the tool before or
after each lot of wafers. Here we seek to employ run by run
process control to address these process and tool issues—to
both reduce or eliminate monitor wafer usage, and to maintain
the performance of CMP processes.

In this work, the product characteristics of concern are the
removal rate (corresponding to a controlled amount of oxide
polished during the step) and the within-wafer uniformity
of that removal rate across the wafer. The removal rate is
determined by measurement of oxide film thickness before
and after polish at each of nine sites on the wafer as shown
in Fig. 2, divided by the (fixed) polish time. The “removal
rate” output is the average of the nine sites on a wafer. The
“nonuniformity” output parameter is computed for each wafer
as the standard deviation of the amount removed over the nine
sites on the wafer, divided by the average amount removed
over the nine sites, times 100.

Two sets of control experiments (detailed in Section V)
were conducted, each on a different polisher. For each ex-

Fig. 3. Baseline CMP experiment.

periment, conventional slurry compositions, composite pads,
and carrier films were used. Pad conditioning was performed
simultaneously or sequentially, depending on the tools used.
Film thicknesses were measured on a Prometrix Spectromap
SM2000. In both experiments, the control goal is to maintain a
target removal rate and within-wafer nonuniformity in the face
of equipment drifts (primarily pad related) and disturbances.
The change in removal rate and nonuniformity for a typical
uncontrolled or baseline oxide polish process (with a fixed
recipe) is shown in Fig. 3. This run, and all those described
in this paper, were conducted on single wafer polishing tools,
using 8 in silicon wafers with a thick blanket oxide deposition.
Because we are only measuring and compensating for wafer-
level variation from run to run, we believe that the same
methodology is also applicable to patterned wafers in which
similar wafer-level variation is typically observed [11].

III. CONTROL SYSTEM DESCRIPTION

The observed drift in CMP processes, and the availability
of post-process measurements, motivate the use of a run by
run control strategy. A generic semiconductor control system
framework has been under development [12]–[15], and is
applied to the CMP control problem. Components of the
control system design include the following.

1) Generic cell control—a framework for the implemen-
tation and incorporation of specific modules (e.g., for
run by run control, communications, metrology, etc.).
Generic services provided by the GCC include user
interface, database access, and application module com-
munication.

2) SECS-II communication with measurement and fabri-
cation equipment. This enables capture of post-process
wafer measurements, and of real-time equipment signals,
as well as down-load of modified process recipes.

3) Statistical process control—conventional and multivari-
ate charting, and mechanisms to dispatch to rapid or
gradual mode controllers based on equipment state.
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Fig. 4. Control system architecture with implemented components.

4) Rapid process adjustment—for rapid update of exist-
ing recipes (e.g., in response to significant shifts in
equipment response), or rapid process evolution and
optimization.

5) Run by run control—for gradual compensation, on a
lot-by-lot basis, of equipment and consumables drift.

In this paper, we focus on a subset of these modules used
to demonstrate process control for CMP, as illustrated in
Fig. 4. The collection of real-time data and preliminary data
compression and diagnosis approaches (e.g., similar to that for
plasma etch [16]) will be reported at a future time. A detailed
discussion of the generic cell controller (GCC) is available
in Moyne et al. [12]–[15]. A general introduction to run by
run control is presented by Sachs [17]; the implementation and
extensions of run by run control algorithms used here for CMP
control are described in [10], and by Boninget al. [18].

The control architecture of Fig. 4 is expanded in Fig. 5
to highlight the control strategy used in this work. Off-
line experiments are performed on the CMP tool to build
empirical (static input-output) models of the process response.
An optimal process recipe is selected that satisfies (or trades
off) design goals; this is used as the initial recipe for process
control. Lots of 10 wafers each are planarized in the tool, and
measurements of oxide film removal rate and nonuniformity
are made on wafers #9 and #10. This information is fed to
the gradual mode run by run controller, which adapts the
process response models. These updated models are then used
to generate a new process recipe which: a) achieves the best
(weighted) trade-off among the multiple output targets or b)
achieves all targets with the smallest (weighted) change in
the recipe. The revised recipe is then used for the next lot of
wafers.

IV. CONTROL MODEL DEVELOPMENT

Screening experiments with a set of seven parameters were
initially performed to determine which machine parameters
exert the strongest influence on removal rate and nonunifor-
mity. Based on this initial screening, an experimental design
for control purposes was restricted to speed, pressure, force,

Fig. 5. CMP run by run control strategy.

TABLE I
EXPERIMENTAL DESIGN PARAMETERS

Factor Lower Bound Upper Bound
speed (rpm) 20 40

pressure (psi) 0 7
force (lb) 8 10

profile -0.9 0.9

and profile. A central composite design in these parameters
was performed, with ranges as summarized in Table I.

Second order polynomial regression models were con-
structed for removal rate and nonuniformity. Model fits
with adjusted of 0.897 and 0.769 for removal rate and
nonuniformity, respectively, were achieved. The response
surfaces (for nominal values of pressure and profile) are
shown in Fig. 6.

Each polynomial regression model is linearized around the
operating point to generate a multivariate model for the gradual
mode run by run controller

where is the output vector (removal rate and nonuniformity),
is the input recipe vector (speed, force, pressure, and

pad profile), is a matrix of model coefficients,
and is a vector of offset terms. In this controller, we
only adapt or update the offset terms, while the gain
coefficients remain fixed. As seen in Fig. 6, the full response
surfaces are nearly linear over the entire operating space. More
importantly, the surfaces are locally very well-behaved (nearly
linear, monotonic) thus justifying a linearization of the models
for control. The robustness of these models in the face of
equipment change is discussed in Section V-C.

V. CONTROLLER SIMULATIONS AND EXPERIMENTS

An important aspect of the run by run controller is adaptive-
ness of the process model. This is illustrated by comparison of
two sets of control experiments: in the first, we use a “partial”
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Fig. 6. Response surfaces for removal rate and uniformity (as a function of speed and force).

model update, and in the second we engage the full adaptive
controller.

For partial model update, the linear model is updated based
on the most recent run, but then combined with the original
linear model before generating a new recipe

where the subscript indicates the (lot) run number, and is
the actual output resulting from the recipe. The variable
is the offset term in the original linear model. In this case, a

weight coefficient of 0.5 was used for removal rate, and 0.3
for nonuniformity. Under this strategy, the system functions
similar to a discrete proportional controller (without integral
action).

In the case of full model update, recursive adaptation oc-
curs by an exponentially weighted moving average (EWMA)
update of the offset term, again based on the error between
model prediction and measurement
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Fig. 7. Partial and full model update—output comparison (simulation).

Fig. 8. Full model update—control inputs (simulation).

Here, is the offset term used on the previous run. The
selection of the weight coefficient is based on consideration
of both noise and sampling (i.e., we measure and average
only wafers 9 and 10 out of each 10 wafer lot). Again,
weight coefficients of for removal rate and 0.3 for
nonuniformity were used.

Simulations were performed for these two cases, as shown
in Figs. 7 and 8. An equipment simulation model was assumed
with gain coefficients 5% greater or smaller than in the control
model, linear drift on the removal rate and nonuniformity,
and additive gaussian noise similar to those observed on the
baseline run. We see that the partial model update does not
adequately compensate for the drift in removal rate, although it
does reduce the impact of the drift compared to an uncontrolled
process. The full model update, on the other hand, succeeds
in removing the drift, with a small bias error due to drift trend
and model mismatch as expected [19].

The recipe (also called the machine settings, inputs, or
control parameters) suggested by the controller are shown

Fig. 9. Partial model update—outputs (experiment #1).

Fig. 10. Partial model update—control inputs (experiment #1).

in Fig. 8 for the full model update simulation. We see that
full multivariate control action is taking place: all four input
parameters are used by the controller to keep removal rate and
uniformity on target. In these simulations and experiments, a
low nonuniformity target (on the order of 100–200) below
that typically achievable was used to keep the nonuniformity
below some acceptable value (a future desirable enhancement
to the controller is the inclusion of constraints on outputs in
addition to or instead of specific target values). Note that in
these simulations we assume very fine resolution on input
parameters. In the experiments that follow, we incorporate
extensions in the algorithm that explicitly account for finite
input resolution (or quantization), observable as discrete jumps
in the input parameters of Figs. 10 and 12. The algorithms
used, including the utilization of input and output weights and
constraints as well as input quantization, are described in detail
in [18].

A. Experiment #1: Partial Model Update

The results of the first control experiment, with only partial
model update, are summarized in Figs. 9 and 10. Examining
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Fig. 11. Full model update—outputs (experiment #2).

the output result for removal rate, we note that the original
recipe deviates significantly from the target (1800Å/min); this
model error is fatal without permanent model adaptation. On
each run, the controller generates a new recipe which attempts
to fully compensate for the difference between desired and
observed removal rate. This change initially (first 50 wafers
or so) moves us closer to the target, but once substantial
drift accumulates, the controller has no means to permanently
improve the control—on each new run, the controller generates
a new recipe which is an improvement over theoriginal
recipe, but not an improvement over theprevious recipe.
The controller does not take advantage of the full range of
input parameters (they have not hit bound constraints); rather,
the problem is that no permanent adaptation or learning is
achieved, and the resulting control is poor.

B. Full Model Update Experiment

In the second experiment, full (permanent) model adaptation
was used. Here we see (Fig. 11) that the drift is compen-
sated much more effectively. Examining the control parameter
moves in Fig. 12, we find that the algorithm responds well,
producing successively more aggressive control effort to com-
pensate for accumulating drift. At the same time as speed
is increased to maintain removal rate, however, we also see
that force is decreased to improve uniformity. The trade-off
between these two goals (seen in the response surface of
Fig. 6) is also apparent in the resulting control action.

We can compare the baseline, partial model update, and
full model update experiments in terms of mean square error
(mean deviation from target squared) in the removal rate. We
find that the baseline gives MSE of , partial model
update of 129, and full model update 36. We thus see that the
full model update strategy performs substantially better than
no control or the partial model update strategy.

C. Control Model Robustness

An interesting issue is the robustness and stability of the
regression linearization models used for control [19]. The

Fig. 12. Full model update—control inputs (experiment #2).

original regression model and its linearization (Section IV)
formed the basis for the first set of control experiments.
These control models were in fact developed on adifferent
tool than that used for the control experiments, and were
developed several months earlier. We found that the CMP
control models appear to capture fundamental aspects of CMP
(e.g., removal rate increases with increased polish speed and
force, as expected). The error in model gain coefficients
(e.g., the gain with respect to polish speed) does, however,
contribute to the bias error observed in controlled outputs.
Further work to address this bias is underway (i.e., predictor-
corrector approaches to attack persistent trends [20], internal
model control for better convergence [21]).

To more directly assess the validity of the control models
across time and tool type, upon completion of the first control
run, a small experimental design was again performed, this
time directly on the tool used for the control experiment. A 40
wafer Box–Behnken design in the four control parameters was
performed. The resulting models were found to be surprisingly
similar to the original models; some coefficients (e.g., speed
term in the removal rate model) were numerically very similar,
and the remaining coefficients were all of the same sign
as the control models. These modeling and control results
are encouraging, and indicate that expensive recalibration of
control models may not be necessary.

VI. CONCLUSION

In this paper, we have demonstrated the successful applica-
tion of run by run control to chemical-mechanical polishing.
CMP processes pose significant problems: lack of endpoint
or other in-situ sensors, poor (primarily empirical) process
understanding, and chronic equipment drift. An integrated
control system is under development to address these problems
that incorporates run by run control algorithms, real-time
monitoring to identify equipment problems, and a generic cell
controller for equipment communication, data management,
and control execution. In this paper, we have focused on
run by run control demonstration utilizing post-process mea-
surements, linearized response surface models from design
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of experiments, and gradual exponentially weighted moving
average model adaptation and recipe adjustments to maintain
process goals. We have also shown the importance of model
adaptation for removal rate maintenance. By incorporating
multivariate [multiple input multiple output (MIMO)] control,
weighted constrained recipe generation, and quantization of
inputs, we have demonstrated control of removal rate while
maintaining adequate uniformity.

This work highlights several areas for future research. First,
real-time monitoring by way of data compression (principal
component analysis) in combination with function approxi-
mation offers the hope of 1) early detection and diagnosis of
machine problems, and 2) correlation with machine state (e.g.,
drift) that can feed into better control of the process. Second,
additional practical issues remain for full automation of the
run by run controller, including rapid mode integration, the
optional selection of a dead band (to reduce or trade-off the
number of control moves if desired), and the support of output
constraints (rather than requiring output targets). Third, the
investigation of additional run by run control methods appears
fruitful, potentially including classical LQG, neural network,
or stochastic dynamic programming approaches that can take
full advantage of emerging empirical and physical models of
the process (particularly those incorporating process dynamics)
[22], [23]. These experiments have been performed on blanket
(unpatterned) oxide wafers; control of uniformity on patterned
wafers is currently being pursued and will be presented in the
future. Finally, the issues of control for metal and damascene
CMP processes are also of practical and future interest and
should be investigated.
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