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A multilevel hierarchical control system has been designed and is being applied to chemical–
mechanical planarization~CMP! process control. The current implementation of the control system
incorporates closed-loop run-to-run~R2R! control and open-loop real-time monitoring, and can
accommodate inter-cell control. The R2R control element is enabled via a generic cell controller
~GCC! implementation that provides flexible automated control of the process and equipment,
multiple control algorithm branches and fuzzy logic decision capability among the branches,
simulation capabilities, hardware and software independence, and extensive GUI support for control
and data analysis. The R2R element utilizes a linear approximation multivariate control algorithm
~branch! that supports individual exponential weighted moving average~EWMA! modeling of
advices~outputs!, weighting of inputs, granularity, and input bounding. The real-time element of the
control system utilizes a partial least squares~PLS! algorithm to identify real-time equipment input
trace patterns and relate these patterns to alarming conditions. The entire control system is designed
to provide multivariate control of CMP process removal rate and uniformity. As a result of extensive
design of experiments and testing, the R2R control level has been demonstrated to achieve good
control of removal rate and fair control of uniformity. The addition of the real-time element is
expected to improve process control and reduce R2R process noise, thus leading to a more effective
R2R control element. ©1996 American Vacuum Society.
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I. INTRODUCTION

Control of semiconductor processes has been and con
ues to be a topic generating significant interest in both ind
try and academia. The study and implementation of con
in the semiconductor manufacturing facility is usually br
ken down into three fundamental levels: real time~time criti-
cal!, run-to-run~R2R!, and factory level~intercell!. The gen-
erally accepted vision is that these three levels of con
together comprise a hierarchical control scheme for the en
facility as shown in Fig. 1.

In real-time process control, the product recipe is mo
fied according to measurements takenin situ ~during a pro-
cess run!. These measurements and recipe modifications
made continuously~or at high sampling rates!; thus it is sig-
nificant that they occur in a timely fashion. In run-to-ru
~R2R! control the measurements and product recipe mod
cations are carried outex situ, i.e., between machine runs
~The term ‘‘run’’ means a single wafer processed individua
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or a set of wafers processed simultaneously.! Factory-level or
intercell control utilizes feedback and feed-forward mech
nisms between processes to improve the quality of the en
fabrication process. The vertical cross section of the cont
scheme given in Fig. 1 depicts a number of significant r
search, development, and standardization problems at e
of these control layers.1–3

The effectiveness of control at any level is depende
upon the ability to sense numerous process and equipm
parameters and to actuate equipment settings. Conseque
the inability to sense numerous process environment para
eters of certain fundamental semiconductor manufacturi
processes@like reactive ion etching~RIE! and chemical–
mechanical planarization~CMP!# has impeded the develop-
ment and implementation of real-time control.2

The realization of an effective and robust multilevel con
trol system in semiconductor manufacturing necessitates
portant design requirements at each control level. At the R
control level there are at least three such requirements. Fi
the controller must provide control over a wide range o
1907/14(3)/1907/7/$10.00 ©1996 American Vacuum Society
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process and equipment operating conditions. In order to
this, the controller generally must utilize a number of s
quential control algorithms in a complementary fashion.4,5

Second, the controller must be able to provide control in t
absence of real-time control and must be able to increm
tally accommodate real-time control as technology advanc
Third, the controller must be able to provide control as a
integral part of the aforementioned hierarchical contr
scheme.6

We have designed a R2R control system that meets th
requirements. The design is based on generic cell contro
~GCC! concept. The GCC enabler provides a dynamic a
reusable solution, provides for the complementary utilizatio
of multiple sequential algorithms, provides control in tande
with as well as in the absence of real-time control, and c
be configured to operate as an integral part of a hierarchi
control scheme.

At the real-time control level, it is important to note tha
sensory or actuation technology for a process such as CM
often insufficient to support this level ofin situ control.
However, as a precursor to control, the system design sho
provide for real-time monitoring of available equipment in
puts so that they may be employed to provide a level
real-time diagnostics. This diagnostic capability mu
complement the R2R control capability; thus a requireme
of the real-time monitor is that it provide a monitoring an
diagnostic capability in the face of changing operating co
ditions ~as suggested by the R2R controller!. We have de-
signed a real-time monitoring and diagnostics system th
meets these requirements. With this design, equipment inp
are monitored in order to infer if the process has exceed
predefined specification limits, signifying that an exceptio
condition has been detected. These exception conditions m
be deduced by~1! an analysis of the current values of one o
more equipment inputs, or~2! an analysis of the history or

FIG. 1. Semiconductor manufacturing facility hierarchical control schem
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‘‘footprint’’ of one or more inputs. This information can then
be utilized by a higher level~R2R! control system to pause,
abort, or stop the process or, in more sophisticated systems,
to alter the process to correct the problem.

II. BACKGROUND

A. Chemical–mechanical planarization

Chemical–mechanical planarization has become a widely
accepted technology for multilevel interconnects. CMP of
dielectric films is the planarization method of choice for 0.35
mm device technology. In addition to providing planariza-
tion, CMP has also been shown to reduce defect density and
define vertical and horizontal wiring.7

CMP is basically a surface planarization method in which
a wafer is affixed to a carrier and pressed face down on a
rotating platen holding a polishing pad as shown in Fig. 2. A
silica based alkaline slurry is applied during polishing thus
providing a chemical and mechanical component to the pol-
ishing process. The general process goal is the preferential
removal of high material across the wafer. Typical process

e.

FIG. 2. Schematic of a typical CMP process.

FIG. 3. Data and product flow in a typical CMP process.
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metrics include removal rate and within-wafer uniformit
Equipment and process parameters that are typically utili
to control the process include polish time, pressure, rotat
speed, and parameters that impact the conditioning of
polishing pad such as conditioning profile. A multilevel co
trol system utilizing these metrics and parameters is sho
in Fig. 3.

There are a number of characteristics of CMP that mak
an ideal candidate for the development, implementation a
test of multilevel control. First, the process is not well u
derstood. This combined with factors such as inconsiste
and degradation of consumables, and lack of sensors
actuators makes CMP a challenging candidate for cont
Second, as there is a lack ofin situ sensors for CMP,in situ
control is not yet feasible; thus a system that features R
control combined with real-time equipment monitoring an
diagnostics appears to be the appropriate form of control t
can be applied to CMP at this time. Third, as wafer surfa
roughness directly impacts the CMP process and results f
upstream processes, CMP is an ideal candidate for fu
integration of intercell control.

The CMP process has been described in much gre
detail elsewhere in the literature.7,8 The CMP R2R control
problem is detailed in Refs. 6 and 9. A summary of the st
of the art of CMP utilization including a discussion of limi
tations of the process and its control is presented in Ref.
A second effort focused on the development of CMP R2
control is described in Refs. 11 and 12.

B. The generic cell controller

The GCC is a discrete control mechanism that utilizes
relational database as opposed to procedural code to s
sequential control information. The theory of operation
the GCC is documented in the literature.13,14 The main fea-
ture of the GCC that makes it an attractive R2R cont
enabler is that the database schema is tailored for the sto
of event driven sequences that dictate how the system
respond to events; these sequences of events and resp
are stored as data in the database. For this reason the GC
capable of enabling complex and dynamic control scenar
that are characteristic of many R2R control systems. Furth
due to GCC database schema and software interaction sp

FIG. 4. Schematic of a typical GCC system.
JVST A - Vacuum, Surfaces, and Films
.
ed
ion
the
-
wn

it
nd
-
cy
and
ol.

2R
d
hat
ce
om
ure

ter

te

10.
R

a
tore
f

ol
age
is
nses
C is
ios
er,
eci-

fications, a very high degree of modularity is established
with GCC applications. This results in both high portability
and transferability of software, and a capability to easily in-
corporate commercially available software components int
the system.

The GCC provides for intelligent routing between the
various software components, or modules, involved in the
R2R control task. These modules may include commerciall
available software such as communications drivers and con
troller algorithms. The block diagram in Fig. 4 depicts the
various components of an example GCC system. The GC
provides an environment for the comparative evaluation o
optimization and control algorithms, as it can incorporate
any number of these algorithms and provide sequences f
their selective utilization. The algorithm evaluation can in-
clude the investigation of paradigms for the complementar
utilization of a number of control algorithms to achieve more
robust control.4,14

Related results associated with the development and d
ployment of the GCC implementation described in this ar-
ticle have also been documented in literature. Specifically
practical issues associated with the utilization of a R2R con
trol algorithm are discussed in Ref. 15. Issues of R2R contro
that relate specifically to CMP are discussed in Ref. 9. A
detailed discussion of the design and operation of the curre
GCC in providing CMP process R2R control is provided in
Ref. 6.

III. RUN-TO-RUN CONTROL

At the level of R2R control, we are integrating into the
GCC multiple optimization and control software modules, a
linear-approximation SPC controller and an artificial neura
net optimizer and controller. We have designed and imple
mented a multiple-control branch-selection algorithm which
allows the GCC to employ these multiple control algorithms
in a complementary fashion.

A. Multiple control branches and branch selection
algorithm

In recent years, various algorithms have been develope
for R2R optimization and control, e.g., Ultramax16 ~Ultra-
max is a trademark of the Ultramax Corporation, Cincinnati
Ohio!, and a linear approximation-based control algorithm.17

There does not appear to exist any single algorithm that ma
be used throughout the entire range of R2R control an
optimization.4 Fortunately, the ranges of applicability of
these algorithms can be roughly expressed in terms of th
process being near or far from its optimum. The proces
engineer in the manufacturing facility in general will have
many ‘‘rules of thumb’’ for process control. It is these
sources of knowledge, even if vague or imprecise, which w
must exploit in order to carry out the selection of control
algorithms.5

An effective controller design should, therefore, provide a
mechanism for utilizing rules of all these types in making the
control decision. Toward this end, we have used fuzzy se
theory to develop an algorithm selection module~ASM! and
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have incorporated it into the GCC system. The ASM utiliz
a fuzzy rule-based decision-making process to select fr
multiple algorithms. The fuzzy rules express knowled
about the suitability of the different control algorithms bas
on the process conditions. For a detailed description of
algorithm selection module and its integration with the GC
see Refs. 5 and 18. The basic functionality of the ASM
depicted in Fig. 5.

B. The MIT run-by-run controller

The MIT run-by-run ~MIT RbR! controller is the main
control algorithm that is in use in the current GCC impl
mentation. It provides sequential control advices through
multivariate adaptive model-based approach. At the hear
the controller is a linear model of the system; outputs a
expressed as a linear combination of the control inputs~with
constant gain!, plus a constant offset term:

y5Ax1c. ~1!

Based on a R2R measurement, the controller adapts the
set termsc, while the gain matrixA remains fixed. The
model is updated recursively by an exponentially weight
moving average~EWMA! update of the offset term based o
the error between model prediction and measurement:

ct5a~yt2Axt!1~12a!ct21 . ~2!

Here ct21 is the offset term used on the previous run. T
selection of the weight coefficienta is based on consider-
ation of noise, drifts, shifts, and model error. An especia
important consideration is the selection of these coefficie
in a closed loop control scenario. In general, the system w
compensate for drifts or shifts in the system more rapid
and closely with larger weights. On the other hand, larg
weights will also cause the controller to react more aggr
sively to noise in the outputs, which can increase the ove
noise through the system. Methods for optimal selection

FIG. 5. Selection of optimization and control algorithms.
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weight coefficients are discussed in Ref. 15. Current researc
is investigating methods for dynamic selection of the weight
based on observation of the system itself~e.g., to decrease
the weight if one observes that the noise in the system in
creases over time!.

Once the model has been updated, the model is inverte
to solve for the plant controls that best achieve the desire
targets for the output parameters of interest. Around this ba
sic structure of R2R control, a number of important practical
issues are addressed by the controller algorithms.9,15 First,
appropriate normalization of inputs and outputs is per-
formed, so that the relative magnitude of individual param-
eters in the multivariate solution does not bias the solution
In conjunction with this normalization, user supplied weights
may be provided~1! to weight the relative importance of
achieving each of several multiple targets, and~2! to weight
the relative willingness to move or change control inputs.
Second, simple weighted least squares solutions are used
either achieve the closest possible fit to the desired set o
targets ~if these cannot be satisfied exactly due to bound
constraints on the inputs! or to achieve the desired targets
with the smallest weighted change to the current recipe. Fi
nally, the controller explicitly handles quantization of input
parameters~e.g., speed only capable being adjusted in inte-
ger units! and finds an acceptable near-optimal process
recipe subject to quantization. A particularly important op-
portunity for improvement to the MIT RbR controller is the
utilization of in situmachine sensor information to guide the
selection of process recipe changes, or to motivate and guid
adaptation of model gain terms. A description of the MIT
RbR controller software implementation can be found in Ref.
19 and, in its incorporation as a module of the GCC, in
Ref. 6.

C. An artificial neural network branch

The MIT RbR controller is successful in detecting small
shifts and drifts and noise. But it performs poorly for a pro-
cess with large shifts and drifts. Artificial neural network
~ANN! technology is a promising tool for not only control,
but also optimization, of manufacturing processes. ANNs are
massively parallel and dynamic in nature and are very effi
cient in modeling nonlinear processes. They can handl
many inputs simultaneously. An ANN basically consists of
three layers: an input layer, an output layer, and one or mor
hidden layers linked to each other through connections
ANNs are predicted to perform better for nonlinear processe
and also to successfully detect large shifts and drifts.

All the advantages of ANN technology can be incorpo-
rated into the GCC by using an additional ANN branch
alongside the MIT RbR controller. The fuzzy branch deter-
mination technique explained in Sec. III A provides the GCC
with the flexibility to employ this set of two control algo-
rithms in a complementary fashion.

We have used a commercial ANN based software tool to
develop our CMP process model and extract the controlle
model from it. Simulation models of complex processes can
be quickly and easily built directly from historical~DOE!
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1911 Telfeyan et al. : Multilevel approach to CMP process control 1911
data. Once a model has been created, the software tool
predict the future behavior of the process, validate sen
information, and control the process.

IV. REAL-TIME MONITORING

As mentioned above, there are very few sensor techno
gies that are capable of directly monitoring CMP proce
variables in real time. However many CMP equipment inpu
may be monitored in real time. We have designed a real-tim
CMP monitoring system that utilizes this information to pro
vide real-time process and equipment diagnostics; the sys
utilizes historical data to derive profiles or footprints of th
system, and then compares real-time data against these f
prints to provide system diagnostics. The control structure
illustrated in Fig. 3.

A. Real-time CMP data

In a recent series of articles20–23methods were developed
to monitor process behavior in batch chemical processes
ing real-time process data. The methods presented in th
papers compare parameter data from current batches to t
cal or average profiles based on historical production. Mu
tivariate statistics model the correlation structure and redu
the high-dimensional and highly correlated parameter data
a few latent variables whose values are monitored on a m
tivariate control chart. Although the chemical processes d
cussed in Refs. 20–23 differ widely in function and purpos
from CMP, the data structure and objectives of CMP mat
well enough to benefit from these ideas.

Developing a real-time process monitor for CMP in th
R2R control context adds another layer of complexity b
yond that seen in the chemical processes of Refs. 20–23
R2R control, process inputs change frequently, directly infl
encing both parameter profiles and product measureme
As a result, the profiles with which current data should b
compared depends on the recipe and other initial conditio
Behavior monitoring becomes a matter of comparing incom
ing parameter readings against expected profiles rather t
average profiles. The following sections describe the da
and situation more rigorously, present functions that shou
be performed by a real-time monitor for CMP, and discu
the need to develop a method beyond those found in
literature.

B. Data used in real-time monitoring

Each run provides a single observation on each variable
an input and initial condition matrixX, a real-time parameter
arrayY, and a product-related data matrixZ.

TheX matrix plots run versus input variables~down pres-
sure, carrier velocity! and initial condition variables~envi-
ronmental data, summary data from the previous runs para
eters, or initial readings on parameters at the beginning of
current run!.

TheY array has three dimensions: run number, real-tim
sample number, and real-time parameter value. That is,
each run number, it shows the real-time parameter value
JVST A - Vacuum, Surfaces, and Films
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each real-time sample within the run. Again, a row in theY
array contains all the parameter data for a single run.

The Z matrix plots run number versus product-related
data ~removal rate, post mean thickness, and removal non
uniformity!. Although their use will not be emphasized here,
these variables can be modeled and predicted from the rea
time parameters and initial condition variables as suggeste
in Refs. 20–23.

In CMP, a relationship of the following form exists be-
tween a row vector in theX matrix and a row matrix in theY
array.

yi5F~xi !1ei . ~3!

In this expression,yi represents a matrix of parameter data
from one run~a single row of theY array!; xi represents a
vector of input and initial condition variables from one run~a
single row of theX matrix!; F is a matrix-valued function;
andei represents a matrix of random errors. The ability of a
real-time monitor to generate expected profiles against whic
to compare incoming data relies on estimating the function
F(xi) based on historical runs.

C. Functions to be performed by a real-time monitor

Considering the R2R control context, a real-time monitor
for CMP must perform a series of functions.

~1! The monitor must create a model based on historica
production data that can predict parameter profiles from
values in thexi vector. This model must be applicable to
recipes not seen in the historical data set and versati
enough to handle a variety of linear and nonlinear rela
tionships between elements ofxi and elements ofyi .

~2! The monitor must reduce the dimensionality of the pa-
rameter data to just a few summary variables~compo-
nents! that can be monitored on a R2R multivariate con-
trol chart.

~3! A trade-off must be made between simplicity and sensi
tivity. Too much dimension reduction may ignore infor-
mation and decrease sensitivity. On the other hand, no
enough dimension reduction may not adequately sim
plify monitoring charts.

~4! The monitor must be capable of tracing abnormal or out
of-control signals in the multi-variate control chart back
to the features in the real-time parameter profiles tha
most likely caused them. This provides a helpful diag-
nostic tool, without which a real-time monitor would be
much less useful. This tool should be able to determine
which parameter at what time interval contributed the
most to the signal.

~5! The monitor should be able to predict the values of the
summary variables each time a new real-time paramete
observation is received. Because polishing times tend t
be short in CMP~on the order of minutes!, this feature is
not as critical to CMP as it may be to some longer
chemical processes. However, it will still serve as an
early warning tool and provide an additional way of pin-
pointing the time in the process at which abnormalities
occur.
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~6! The monitor should create a model based on histori
production data that can predict product-related d
from values in thexi vector andyi matrix. Although this
is a valuable use of real-time data, the methods s
gested in Ref. 21 effectively perform this function~see
below! and need no further development for applicatio
to CMP.

D. Need for CMP process monitor development

To meet these criteria, and to be able to be applied
CMP and R2R control, the methods presented in Re
20–23 must be extended or changed. The existing
proaches perform functions 2–4, but the processes for wh
they were developed did not merit the development of fun
tion 1. A more detailed description of a method described
Ref. 21 clarifies the need for additional consideration of t
profile modeling function.

Three separate methods for monitoring batch proces
are suggested by Ref. 21, the method of choice dependin
the types of data available. One of these methods makes
of input, initial condition, and product measurement data a
is based on multiblock multiway PLS~partial least squares o
projection to latent structures!.

In terms of the notation presented here, PLS models
product-related variables in theZ matrix in terms of theX
matrix andY array ~note the different notation in Refs. 20–
23!. The functional relationship can be expressed as

zi5G~xi ,yi !1 f i . ~4!

In this expression,zi represents a vector of product data~a
single row of theZ matrix!; G is a vector-valued function;xi
represents a vector of input and initial condition data~a
single row of theX matrix!; yi represents a matrix of param
eter data~a single row of theY array!; and f i represents a
vector of random errors.

Multiblock multiway PLS estimates the functionG, re-
taining the first few latent variables related to theY array for
behavior monitoring. Incoming parameter data is then co
pared to average profiles based on the information retaine
these latent variables. Deviations from these average pro
represent random error, giving rise to the following relatio
ship between average profiles and incoming profiles:

yi5 ȳ1ei* . ~5!

In this expression,yi again refers to a matrix of paramete
data;ȳ represents a matrix containing average parameter p
files; andei* represents a matrix of random errors.

Comparison between Eqs.~3! and ~5! highlights the dif-
ference between methods applicable to CMP process m
toring ~under R2R control! and those that work for the batch
processes discussed in Refs. 20–23. Equation~3! suggests
comparison of current parameter profiles to expected p
files, while Eq.~5! suggests comparison with average pr
files. The need to address the model in Eq.~5! arises only
because of R2R control. For wafers polished at a fixed rec
and constant initial conditions, Eq.~3! simplifies to Eq.~5!,
and the methods presented in Refs. 20–23 can be app
J. Vac. Sci. Technol. A, Vol. 14, No. 3, May/Jun 1996
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However, ignoring the relationship in Eq.~3! when it exists
~as in CMP! dumps all this explainable variation into error,
inflating the variance of latent variables and the multivariate
control limits.

V. CONCLUSION

In this article we have presented a design for a multileve
control system that is applicable to semiconductor manufac
turing. The design incorporates real-time and run-to-run
~R2R! control elements and provides a comprehensive, ro
bust and dynamic control solution. Elements of this design
have been developed and applied to the control of a CMP
process. Specifically, a R2R control system has been deve
oped and deployed that provides R2R multivariate control o
material removed and uniformity by analyzing and improv-
ing the process recipe. A real-time monitoring and diagnos
tics system has also been developed and deployed that an
lyzes equipment inputs~including R2R recipe variations! and
input histories and deduces exception conditions from inpu
value combinations and input footprints.

In the near future we see the potential for research an
development at each of the three levels of control applied to
the CMP process. At the real-time level, open-loop diagnos
tics will be further integrated with the R2R controller, with
the long term goal being the development of sensing tech
nology and corresponding control algorithms to achieve
closed-loop real-time control. At the R2R level, efforts are
continuing on developing additional control branches and in
tegrating them into the multibranch control scheme so as t
enhance the robustness of the controller. Finally, at the inter
cell level efforts are focused on implementing and testing
enabling mechanisms that can carry out intercell feedbac
and feed-forward control.3
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