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A multilevel hierarchical control system has been designed and is being applied to chemical—
mechanical planarizatiofCMP) process control. The current implementation of the control system
incorporates closed-loop run-to-r{R2R) control and open-loop real-time monitoring, and can
accommodate inter-cell control. The R2R control element is enabled via a generic cell controller
(GCO implementation that provides flexible automated control of the process and equipment,
multiple control algorithm branches and fuzzy logic decision capability among the branches,
simulation capabilities, hardware and software independence, and extensive GUI support for control
and data analysis. The R2R element utilizes a linear approximation multivariate control algorithm
(branch that supports individual exponential weighted moving averdg&/MA) modeling of
advices(outputsg, weighting of inputs, granularity, and input bounding. The real-time element of the
control system utilizes a partial least squalieeS) algorithm to identify real-time equipment input

trace patterns and relate these patterns to alarming conditions. The entire control system is designed
to provide multivariate control of CMP process removal rate and uniformity. As a result of extensive
design of experiments and testing, the R2R control level has been demonstrated to achieve good
control of removal rate and fair control of uniformity. The addition of the real-time element is
expected to improve process control and reduce R2R process noise, thus leading to a more effective
R2R control element. €1996 American Vacuum Society.

[. INTRODUCTION or a set of wafers processed simultaneolslgctory-level or
intercell control utilizes feedback and feed-forward mecha-
Control of semiconductor processes has been and contifisms between processes to improve the quality of the entire
ues to be a topic generating significant interest in both indusgayrication process. The vertical cross section of the control
try and academia. The study and implementation of controgcheme given in Fig. 1 depicts a number of significant re-

Ikn :]hg ivirr;:](;or;ﬁlrjctofr rr}r;jarxfa;}c;tl:rlln\? ;‘a;:htyl Lismusual?i/ti bro- search, development, and standardization problems at each
en do 0 three fundamental Ievels. real ithme Criti-—— ¢ o g6 control layers:

cal, run-to-run(R2R), and factory levelintercel). The gen- The effectiveness of control at any level is dependent

erally accepted vision is that these three levels of control N the ability t nse numer . nd ioment
together comprise a hierarchical control scheme for the entir pon the abillty 1o SENSEe NUMEToUs process and equipme
parameters and to actuate equipment settings. Consequently,

facility as shown in Fig. 1. T ?
_the inability to sense numerous process environment param-

In real-time process control, the product recipe is modi ) X X
fied according to measurements takersitu (during a pro- eters of certain fundamental semiconductor manufacturing

cess rup These measurements and recipe modifications arérocessedlike reactive ion etchingRIE) and chemical—
made continuouslyor at high sampling ratgsthus it is sig- mechanical planarizatiofCMP)] has impeded the develop-
nificant that they occur in a timely fashion. In run-to-run Ment and implementation of real-time contfol.
(R2R) control the measurements and product recipe modifi- The realization of an effective and robust multilevel con-
cations are carried owx sity i.e., between machine runs. trol system in semiconductor manufacturing necessitates im-
(The term “run” means a single wafer processed individually portant design requirements at each control level. At the R2R
control level there are at least three such requirements. First,
dElectronic mail: moyne@umich.edu the controller must provide control over a wide range of
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Fic. 2. Schematic of a typical CMP process.
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Fic. 1. Semiconductor manufacturing facility hierarchical control scheme.

“footprint” of one or more inputs. This information can then

be utilized by a higher levelR2R) control system to pause,
abort, or stop the process or, in more sophisticated systems,
to alter the process to correct the problem.

. BACKGROUND
process and equipment operating conditions. In order to do

this, the controller generally must utilize a number of se-A- Chemical-mechanical planarization

quential control algorithms in a complementary fastion.  Chemical-mechanical planarization has become a widely
Second, the controller must be able to provide control in theyccepted technology for multilevel interconnects. CMP of
absence of real-time control and must be able to incremenjelectric films is the planarization method of choice for 0.35
tally accommodate real-time control as technology advanceg,m device technology. In addition to providing planariza-
Third, the controller must be able to provide control as antjon, CMP has also been shown to reduce defect density and
integral part of the aforementioned hierarchical controldefme vertical and horizontal wiring.
schemé. CMP is basically a surface planarization method in which
We have designed a R2R control system that meets thegewafer is affixed to a carrier and pressed face down on a
requirements. The design is based on generic cell controllgbtating platen holding a polishing pad as shown in Fig. 2. A
(GCQ) concept. The GCC enabler provides a dynamic andijica based alkaline slurry is applied during polishing thus
reusable solution, provides for the complementary utilizatiorproviding a chemical and mechanical component to the pol-
of multiple sequential algorithms, provides control in tandemishing process. The general process goal is the preferential

with as well as in the absence of real-time control, and cafemoval of high material across the wafer. Typical process
be configured to operate as an integral part of a hierarchical

control scheme.

At the real-time control level, it is important to note that
sensory or actuation technology for a process such as CMP is GCC
often insufficient to support this level dh situ control. AR
However, as a precursor to control, the system design should
provide for real-time monitoring of available equipment in-
puts so that they may be employed to provide a level of
real-time diagnostics. This diagnostic capability must
complement the R2R control capability; thus a requirement
of the real-time monitor is that it provide a monitoring and
diagnostic capability in the face of changing operating con-
ditions (as suggested by the R2R controllewe have de-
signed a real-time monitoring and diagnostics system that

Real-Time
Monitoring &
Diagnostics

Equipment Controller

meets these requirements. With this design, equipment inputs
are monitored in order to infer if the process has exceeded
predefined specification limits, signifying that an exception
condition has been detected. These exception conditions may
be deduced byl) an analysis of the current values of one or
more equipment inputs, d2) an analysis of the history or
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fications, a very high degree of modularity is established
with GCC applications. This results in both high portability

, : and transferability of software, and a capability to easily in-
[ Module Contw"er] corporate commercially available software components into
the system.

The GCC provides for intelligent routing between the
various software components, or modules, involved in the
Simulator R2R control task. These modules may include commercially
available software such as communications drivers and con-
l e l troller algorithms. The block diagram in Fig. 4 depicts the

various components of an example GCC system. The GCC
provides an environment for the comparative evaluation of
Fic. 4. Schematic of a typical GCC system. optimization and control algorithms, as it can incorporate
any number of these algorithms and provide sequences for
their selective utilization. The algorithm evaluation can in-
metrics include removal rate and within-wafer uniformity. clude the investigation of paradigms for the complementary
Equipment and process parameters that are typically utilizedtilization of a number of control algorithms to achieve more
to control the process include polish time, pressure, rotationobust controf:14
speed, and parameters that impact the conditioning of the Related results associated with the development and de-
polishing pad such as conditioning profile. A multilevel con- ployment of the GCC implementation described in this ar-
trol system utilizing these metrics and parameters is showticle have also been documented in literature. Specifically,
in Fig. 3. practical issues associated with the utilization of a R2R con-

There are a number of characteristics of CMP that make itrol algorithm are discussed in Ref. 15. Issues of R2R control
an ideal candidate for the development, implementation anthat relate specifically to CMP are discussed in Ref. 9. A
test of multilevel control. First, the process is not well un- detailed discussion of the design and operation of the current
derstood. This combined with factors such as inconsistencCC in providing CMP process R2R control is provided in
and degradation of consumables, and lack of sensors arRkef. 6.
actuators makes CMP a challenging candidate for control.

Second, as there is a lack iof situ sensors for CMHn situ

control is not yet feasible; thus a system that features R2#!- RUN-TO-RUN CONTROL

control combined with real-time equipment monitoring and At the level of R2R control, we are integrating into the
diagnostics appears to be the appropriate form of control thabCC multiple optimization and control software modules, a
can be applied to CMP at this time. Third, as wafer surfacdinear-approximation SPC controller and an artificial neural
roughness directly impacts the CMP process and results fromet optimizer and controller. We have designed and imple-
upstream processes, CMP is an ideal candidate for futuréented a multiple-control branch-selection algorithm which
integration of intercell control. allows the GCC to employ these multiple control algorithms

The CMP process has been described in much greatéi a complementary fashion.
detail elsewhere in the literatufé. The CMP R2R control
problem is detailed in Refs. 6 and 9. A summary of the stat
of the art of CMP utilization including a discussion of limi-
tations of the process and its control is presented in Ref. 10. In recent years, various algorithms have been developed
A second effort focused on the development of CMP R2Rfor R2R optimization and control, e.g., UltrantéxUltra-
control is described in Refs. 11 and 12. max is a trademark of the Ultramax Corporation, Cincinnati,
Ohio), and a linear approximation-based control algoritdm.
There does not appear to exist any single algorithm that may
be used throughout the entire range of R2R control and

The GCC is a discrete control mechanism that utilizes aptimization? Fortunately, the ranges of applicability of
relational database as opposed to procedural code to stotleese algorithms can be roughly expressed in terms of the
sequential control information. The theory of operation ofprocess being near or far from its optimum. The process
the GCC is documented in the literatdfe"* The main fea- engineer in the manufacturing facility in general will have
ture of the GCC that makes it an attractive R2R controlmany “rules of thumb” for process control. It is these
enabler is that the database schema is tailored for the storageurces of knowledge, even if vague or imprecise, which we
of event driven sequences that dictate how the system iswust exploit in order to carry out the selection of control
respond to events; these sequences of events and responakgrithms®
are stored as data in the database. For this reason the GCC isAn effective controller design should, therefore, provide a
capable of enabling complex and dynamic control scenariomechanism for utilizing rules of all these types in making the
that are characteristic of many R2R control systems. Furthegontrol decision. Toward this end, we have used fuzzy set
due to GCC database schema and software interaction spetiieory to develop an algorithm selection mod(#&M) and

Child GCC

Parent GCC

Builder

GCC
Kernel

Equipment
Such as a CMP or
Metrology Tool

Control RuleBase

System State

éA. Multiple control branches and branch selection
algorithm

B. The generic cell controller
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Data within limits?

weight coefficients are discussed in Ref. 15. Current research
is investigating methods for dynamic selection of the weight
based on observation of the system itgelfg., to decrease
the weight if one observes that the noise in the system in-

Start

No —» Error
creases over time
Yes Once the model has been updated, the model is inverted
[W to solve for the plant controls that best achieve the desired
algorithns to use targets for the output parameters of interest. Around this ba-
N sic structure of R2R control, a number of important practical
OPTIMIZATION / CONTROL issues are addressed by the controller algorithfdsirst,
Statistical Predictive Expert appropriate normalization of inputs and outputs is per-
Models Modets Systems formed, so that the relative magnitude of individual param-
eters in the multivariate solution does not bias the solution.
Determine adyice In conjunction with this normalization, user supplied weights
ety may be provided1) to weight the relative importance of
i achieving each of several multiple targets, @Bdto weight
@ Star the relative willingness to move or change control inputs.
models Second, simple weighted least squares solutions are used to
either achieve the closest possible fit to the desired set of
Fic. 5. Selection of optimization and control algorithms. targets (if these cannot be satisfied exactly due to bound

constraints on the inpytor to achieve the desired targets

have incorporated it into the GCC system. The ASM utilizesWith the smallest weighted change to the current recipe. Fi-

a fuzzy rule-based decision-making process to select frorﬂa”y’ the controller explicitly handles qgantizgtion Of. input
multiple algorithms. The fuzzy rules express knowledgeparamgtereie.g., ;peed only capable being adjgsted In inte-
about the suitability of the different control algorithms basedd®" unity gnd finds an apceptable .near—op.t|mal process
on the process conditions. For a detailed description of théec'pe.SUbJe‘?t to quantization. A particularly |mportqnt op-
algorithm selection module and its integration with the GCC,portunlty for improvement to the MIT RbR controller is the

see Refs. 5 and 18. The basic functionality of the ASM iSutilization of in situ machine sensor information to guide the
depicted in Fig. 5 ' selection of process recipe changes, or to motivate and guide

adaptation of model gain terms. A description of the MIT
RbR controller software implementation can be found in Ref.
19 and, in its incorporation as a module of the GCC, in
The MIT run-by-run(MIT RbR) controller is the main Ref. 6.
control algorithm that is in use in the current GCC imple-
mentation. It provides sequential control advices through
multivariate adaptive model-based approach. At the heart o
the controller is a linear model of the system; outputs are The MIT RbR controller is successful in detecting small
expressed as a linear combination of the control inpuith ~ shifts and drifts and noise. But it performs poorly for a pro-
constant gaiy) plus a constant offset term: cess with large shifts and drifts. Artificial neural network
(ANN) technology is a promising tool for not only control,
y=Ax+c. () put also optimization, of manufacturing processes. ANNs are
Based on a R2R measurement, the controller adapts the offaassively parallel and dynamic in nature and are very effi-
set termsc, while the gain matrixA remains fixed. The cient in modeling nonlinear processes. They can handle
model is updated recursively by an exponentially weightednany inputs simultaneously. An ANN basically consists of
moving averagéEWMA) update of the offset term based on three layers: an input layer, an output layer, and one or more
the error between model prediction and measurement: hidden layers linked to each other through connections.
ANNSs are predicted to perform better for nonlinear processes
and also to successfully detect large shifts and drifts.
Herec,_; is the offset term used on the previous run. The All the advantages of ANN technology can be incorpo-
selection of the weight coefficient is based on consider- rated into the GCC by using an additional ANN branch
ation of noise, drifts, shifts, and model error. An especiallyalongside the MIT RbR controller. The fuzzy branch deter-
important consideration is the selection of these coefficientmination technique explained in Sec. Il A provides the GCC
in a closed loop control scenario. In general, the system wilvith the flexibility to employ this set of two control algo-
compensate for drifts or shifts in the system more rapidlyrithms in a complementary fashion.
and closely with larger weights. On the other hand, larger We have used a commercial ANN based software tool to
weights will also cause the controller to react more aggresdevelop our CMP process model and extract the controller
sively to noise in the outputs, which can increase the overalinodel from it. Simulation models of complex processes can
noise through the system. Methods for optimal selection obe quickly and easily built directly from historicdDOE)

B. The MIT run-by-run controller

. An artificial neural network branch

Ci=a(yi—AX)+(1—a)ci_;. (2
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data. Once a model has been created, the software tool caach real-time sample within the run. Again, a row in the
predict the future behavior of the process, validate sensaarray contains all the parameter data for a single run.
information, and control the process. The Z matrix plots run number versus product-related
data(removal rate, post mean thickness, and removal non-
uniformity). Although their use will not be emphasized here,
IV. REAL-TIME MONITORING these variables can be modeled and predicted from the real-
As mentioned above, there are very few sensor technoldime parameters and initial condition variables as suggested
gies that are capable of directly monitoring CMP processn Refs. 20-23.
variables in real time. However many CMP equipment inputs In CMP, a relationship of the following form exists be-
may be monitored in real time. We have designed a real-timéwveen a row vector in th¥ matrix and a row matrix in th¥
CMP monitoring system that utilizes this information to pro- array.
vide real-time process and equipment diagnostics; the system yi=F(x)+e 3)
utilizes historical data to derive profiles or footprints of the : : "
system, and then compares real-time data against these fodit- this expressiony; represents a matrix of parameter data
prints to provide system diagnostics. The control structure ifrom one run(a single row of theY array); x; represents a
illustrated in Fig. 3. vector of input and initial condition variables from one ran
single row of theX matrix); F is a matrix-valued function;
ande; represents a matrix of random errors. The ability of a
In a recent series of articl&s23methods were developed real-time monitor to generate expected profiles against which
to monitor process behavior in batch chemical processes uss compare incoming data relies on estimating the function
ing real-time process data. The methods presented in the§gx;) based on historical runs.
papers compare parameter data from current batches to typi-
cal or average profiles based on historical production. Mul-C. Functions to be performed by a real-time monitor
tivariate statistics model the correlation structure and reduce
the high-dimensional and highly correlated parameter data t
a few latent variables whose values are monitored on a mu
tivariate control chart. Although the chemical processes dis¢l) The monitor must create a model based on historical
cussed in Refs. 20—23 differ widely in function and purpose  production data that can predict parameter profiles from
from CMP, the data structure and objectives of CMP match  values in thex; vector. This model must be applicable to
well enough to benefit from these ideas. recipes not seen in the historical data set and versatile
Developing a real-time process monitor for CMP in the  enough to handle a variety of linear and nonlinear rela-
R2R control context adds another layer of complexity be- tionships between elements xjfand elements of; .
yond that seen in the chemical processes of Refs. 20—23. I{2) The monitor must reduce the dimensionality of the pa-
R2R control, process inputs change frequently, directly influ-  rameter data to just a few summary variableesmpo-
encing both parameter profiles and product measurements. nentg that can be monitored on a R2R multivariate con-
As a result, the profiles with which current data should be trol chart.
compared depends on the recipe and other initial conditiong3) A trade-off must be made between simplicity and sensi-
Behavior monitoring becomes a matter of comparing incom-  tivity. Too much dimension reduction may ignore infor-
ing parameter readings against expected profiles rather than mation and decrease sensitivity. On the other hand, not
average profiles. The following sections describe the data enough dimension reduction may not adequately sim-
and situation more rigorously, present functions that should plify monitoring charts.
be performed by a real-time monitor for CMP, and discus94) The monitor must be capable of tracing abnormal or out-
the need to develop a method beyond those found in the of-control signals in the multi-variate control chart back
literature. to the features in the real-time parameter profiles that
most likely caused them. This provides a helpful diag-
nostic tool, without which a real-time monitor would be
much less useful. This tool should be able to determine
Each run provides a single observation on each variable in  which parameter at what time interval contributed the

A. Real-time CMP data

Considering the R2R control context, a real-time monitor
for CMP must perform a series of functions.

B. Data used in real-time monitoring

an input and initial condition matriX, a real-time parameter most to the signal.

array Y, and a product-related data matix (5) The monitor should be able to predict the values of the
The X matrix plots run versus input variablédown pres- summary variables each time a new real-time parameter

sure, carrier velocityand initial condition variablegenvi- observation is received. Because polishing times tend to

ronmental data, summary data from the previous runs param- be short in CMRon the order of minutgsthis feature is
eters, or initial readings on parameters at the beginning of the not as critical to CMP as it may be to some longer
current run. chemical processes. However, it will still serve as an

The Y array has three dimensions: run number, real-time  early warning tool and provide an additional way of pin-
sample number, and real-time parameter value. That is, for pointing the time in the process at which abnormalities
each run number, it shows the real-time parameter value for occur.

JVST A - Vacuum, Surfaces, and Films
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(6) The monitor should create a model based on historicaHowever, ignoring the relationship in E(B) when it exists
production data that can predict product-related datdas in CMB dumps all this explainable variation into error,
from values in the; vector andy; matrix. Although this inflating the variance of latent variables and the multivariate
is a valuable use of real-time data, the methods sugeontrol limits.
gested in Ref. 21 effectively perform this functi¢see
below) and need no further development for applicationyy, CONCLUSION

to CMP. . . : .
In this article we have presented a design for a multilevel

D. Need for CMP process monitor development control system that is applicable to semiconductor manufac-
('%uring. The design incorporates real-time and run-to-run
. R2R) control elements and provides a comprehensive, ro-
CMP and R2R control, the methods presented in Ref ust and dynamic control solution. Elements of this design

20-23 must be extended or changed. The existing apﬂave been developed and applied to the control of a CMP

t)hroaches pderforlm fudn((:jt_lgns t2_4, lt)'j[':] thg prolcessestfo][ :cNh'Cprocess. Specifically, a R2R control system has been devel-
ey were developed did not merit the development o unF:'oped and deployed that provides R2R multivariate control of

tion 1. A more detailed description of a method described in .. .\ e moved and uniformity by analyzing and improv-

Ref. 21 clarifies the need for additional consideration of themg the process recipe. A real-time monitoring and diagnos-

profile modeling function. tics system has also been developed and deployed that ana-

Three s?pgrsteRrr}etzhlo(:E for ';?loré'tof“nr? _batgh prog_essq zes equipment inputncluding R2R recipe variationsnd
are suggested by et. 22, the Method of cholce depending Qh, i pistories and deduces exception conditions from input
the types of data available. One of these methods makes usé?ue combinations and input footprints
of input, initial condition, and product measurement data amy In the near future we see the poten‘tial for research and

's based on multiblock multiway PL@partial least squares or development at each of the three levels of control applied to

proljetitlon to :ca;fnt st:utgturés ted h PLS model ththe CMP process. At the real-time level, open-loop diagnos-
rog ;”:ja?e d eapgbzlielgnnptrr:er:a?r' 'irférms O;nt(;]@e(s fics will be further integrated with the R2R controller, with
produ varl ! X the long term goal being the development of sensing tech-

?3?tr¥h2nfi\r(1czgzl(Tglt:tii)hnesgilgir::tbgoéit;gsgeze;z. 20 nology and corre_sponding control algorithms to achieve
' closed-loop real-time control. At the R2R level, efforts are
zi=G(x,y) +f;. (4)  continuing on developing additional control branches and in-

tegrating them into the multibranch control scheme so as to

In this expressiong; represents a vector of product ddga  enhance the robustness of the controller. Finally, at the inter-

single row of theZ matrix); G is a vector-valued functiorx; cell level efforts are focused on implementing and testing

represents a vector of input and initial condition dée enabling mechanisms that can carry out intercell feedback
single row of theX matrix); y; represents a matrix of param- and feed-forward contrdl.

eter data(a single row of theY array); and f; represents a
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