
Abstract

A process-independent generic cell controller (GCC) has been developed
as a part of a supervisory control framework for semiconductor manufac-
turing processes. It can function in a hybrid, dynamic process environment
where facility structure, networks, controllers, equipment, products, and
operations are constantly changing. The GCC is designed primarily as a
run-to-run (R2R) controller that can be controlled by inter-process factory
controllers, can incorporate real-time controllers, and is currently being
adapted for transfer to industry. A GCC implementation has performed
optimization and control of plasma etching and chemical-mechanical pla-
narization, illustrating process independence.

Introduction

This paper examines a design for a generic cell controller (GCC) which has been imple-
mented and tested in the run-to-run (R2R) control of two semiconductor manufacturing
processes: RIE and CMP. The GCC is best understood in its context within the model of a
fully-automated VLSI fabrication facility. This widely-accepted model denotes a hierar-
chical control structure shown in Figure 1. At the top of the hierarchy, a factory controller
acts as a supervisory production controller and a gateway to upper management. At the
bottom, the leaves are equipment involved in VLSI wafer processing.

Each group of equipment dedicated to a particular manufacturing process is called
a cell and is controlled by a cell controller. The cell controllers divide the task of wafer
processing amongst the various equipment involved in the particular process.

The GCC is an event-driven mechanism, responding to high-level commands from
a parent controller and executing these commands by sending a series of lower-level com-
mands to subordinate controllers, be they equipment controllers or other GCCs. The GCC
is a run-to-run (R2R) controller. R2R control is a form of discrete process and machine
control in which the product recipe with respect to a particular machine and machine pro-
cess is modified at an ex-situ process-to-process level as opposed to an in-situ level, i.e.,

Roland Telfeyan and James Moyne

The University of Michigan
Ann Arbor, Michigan 48109-2108

telfeyan@umich.edu

Arnon Hurwitz

SEMATECH
Austin, TX 78741-6499

arnon.hurwitz@sematech.org

John Taylor

Compugenesis, Inc.
Austin, TX 78739

jtaylor@compugen.com

Demonstration of a Process-Independent
Run-to-Run Controller187th Meeting of the Electrochemical Society, May 1995

2

the product recipe is modified between machine runs rather than during runs. A major
emphasis in R2R control research has been on the development and implementation of
algorithms for discrete process control. The ranges of use of each of these methods though
generally overlapping, vary greatly in many cases. Thus, in an ideal discrete control sys-
tem, a number of these methods could be utilized in a complementary fashion.

Thus, the main significance of the GCC is that it integrates and automates the inter-
operation of not only all the equipment in the cell, but also all the control algorithms used
for discrete process control within the cell. The GCC is the glue, or enabler, which binds
all these hardware and software components together, automating the cell. The remainder
of this paper examines the GCC R2R controller design and demonstrates how this design
is able to bind together, automate, and control all of the equipment that make up a manu-
facturing cell.

Design Requirements, Approach, and Implementation

A practical and reusable process-independent GCC must have the capabilities listed
below. For each capability, design requirements are specified, then the approach to the
design and implementation of the current version of the GCC (1.0) is summarized.

Dynamic control scheme. The GCC’s source of control knowledge should be
persistent yet dynamic, capable of being updated in mid-process and capable of being
adapted to many different processes by the user. One way to achieve this goal is to have
the control knowledge stored in a database rather than in static code. By storing the control
knowledge in a database, it makes the knowledge capable of being changed or modified
quickly, easily, and at any time. This dynamic control knowledge enables the GCC to
respond quickly and easily to changes in the steps required to carry out a process.

Approach. When the GCC receives an event, the control scheme determines the
action to be taken in order to service that event. That control action consists of a sequence
of messages sent to modules (explained below) to carry out the desired task. In other
words, the control scheme is a list of event-action pairs, where an event represents a high-
level command to the GCC and the action is a list of module invocations. The control
scheme is stored in a dynamic database rather than in static code, so that it is able to be
modified even during the execution of a process if necessary. This dynamic control
scheme is critical to the GCC’s quality of process-independence, and it is the mechanism
by which modules are bound to the GCC.

Simply put, for each incoming event, the GCC control knowledge maps the event into a
series of commands to modules. Changing or adding to the control knowledge requires no
re-coding or re-linking, because the control knowledge is stored in a dynamic database. It
is therefore easy for the GCC to have different sets of control knowledge for different pro-
cesses, and it is easy for the GCC to adapt or add to its knowledge on the fly, that is, even

3

in the midst of carrying out a run. The ability to adapt while running allows the GCC to
accommodate a wide range of conditions within a process.

In the current implementation, the GCC control knowledge is defined in terms of a rela-
tional database and is implemented in SQL. The GCC database access layer supports SQL
servers from multiple vendors: ORACLE, SYBASE, and QuickBase. There are future
plans to create a graphical user interface to the control knowledge, complete with a learn-
ing mechanism that will query the user for the desired action when an unknown event is
received.2

Plug-and-play integration of external software modules. The GCC must
be able to inter-operate with software programs such as process model builders, optimiz-
ers, control algorithms, and equipment interfaces. Thus, the GCC must define a generic
interface to all such types of software programs. These types of programs, called modules,
must be able dynamically to connect and disconnect from the GCC without any code mod-
ification. There should be a module interface which facilitates the passing of arbitrary
data, determined at runtime, between the GCC and the module. The module interface must
allow users to develop custom modules or third-party developers to produce shrink-
wrapped modules. This generic and dynamic interface to software modules is critical to
the requirement of process independence (below).

Approach. A suite of software objects have been developed as part of a software
interface specification for the GCC, which meets all of the above requirements. For further
information, this specification is available upon request.4 A full discussion is beyond the
scope of this paper, but the essential job of these core objects is to facilitate the interfacing
software modules to the GCC. Third-party integrators can make their software a module to
the GCC in a very short amount of time by using these objects. They hide all of the details
and provide a clean and simple interface.

Process-independence. By virtue of the foregoing two design requirements,
the GCC has defined a generic interface to the process and the equipment being controlled.
Because the control scheme mechanism is dynamic, the GCC can be programmed with
control knowledge for any process. Because software modules and equipment interface
modules and be integrated to the GCC’s well-defined interface specification, the GCC can
work with any software or equipment related to a given process.

No matter what tool is being used or what software and hardware is being used to control
it, the interface to the GCC is well-defined, allowing for the interchangeability of these
software and hardware. Further, the GCC is able to work with a new process without any
code change, recompilation, or relinking. New equipment controller modules are able to
be integrated into the GCC without any code modifications, and they are able to connect to
and disconnect from the GCC dynamically.

4

The relationship of modular software and dynamic control scheme to process indepen-
dence is illustrated in Figure 3. To prepare the GCC to handle a new process, one must
insure that there is a control scheme for the desired process, and that there are suitable
modules that the control scheme will invoke. There is no re-compilation or re-linking
required.

Complementary operation of many control and optimization methods.
The GCC has the ability to run several controllers and optimizers concurrently, taking the
advice given by the most appropriate controller or optimizer to use for the current run.
Fuzzy heuristics are used to make the decision as to which controller or optimizer is best
for the current run. Figure 4 shows how several optimization and control modules can be
used in concert. This fuzzy branch determination mechanism is described elsewhere.1

Ability to provide R2R control with or without in-situ control. The GCC
should always be able to provide R2R control. Further, it should be able to delegate in-
situ, real-time control to subordinate equipment controllers, if they exist.

Approach. The GCC is a major component of a multi-level control system that
includes real-time equipment and process control as well as soft-real-time process control
components operating in conjunction with the sequential control component. The process
control problem is broken down into three control components: in-situ process factory
control, in-situ process control, and discrete (R2R) product control. In the ideal case these
three control loops operate concurrently in a hierarchical feedback fashion (Figure 2). In
the ideal factory control environment, this multi-level process control system described is
a component of a higher level factory control system that provides for process integration
and inter-process control.

Platform independence. The GCC and all of its components should run on
multiple hardware architectures and operating systems.

Approach. The current GCC implementation runs on NEXTSTEP (Mach UNIX)
which runs on multiple hardware platforms: Intel 486 and Pentium, HP PA-RISC, and Sun
SPARC. In the future, this list will also include PowerPC and DEC Alpha. In the near
future, the GCC will also be running on the following operating systems: Solaris (Pow-
erPC, SPARC, Intel), Windows NT (Intel), and DEC UNIX (Alpha). Most of these devel-
opment efforts are well on their way to completion.

GCC Software Components

The GCC is suite of software applications (Figure 5) which consists of the GCC kernel
and a set of modules. One of the modules is a graphical user interface (GUI) which pre-
sents an abstract view of the cell (Figure 6), showing the high-level commands that the

5

GCC can accept on behalf of the cell, together with the list of modules that will actually
carry out the work to execute high-level commands.

The GCC Kernel

The GCC waits for events and reacts with corresponding actions. When the GCC receives
a command, an event is posted, and the GCC consults its database to determine a corre-
sponding action, an ordered-list of invocations. An invocation is a message sent to a target.
The targets in this case are the various modules connected to the GCC.

The actions corresponding to events (the control scheme) are programmed and
stored in the GCC’s database by the user. (The database has a low-level API, but currently
it has no high-level API tailored to programming this control knowledge, and thus it also
has no GUI. These two deficiencies will be addressed in the next major release.)

The modules to be invoked by the control scheme are either purchased as third-
party packages or can be tailor-made by the user. Instructions for writing a module are
straightforward and are available on request.4

The GCC Graphical User Interface

For each manufacturing cell, the graphical user interface (GUI) will present a window
with two browsers (Figure 6):

• Commands: The high-level commands that the GCC is able to carry out on
behalf of this cell

• Modules: The modules associated with those commands. The modules are the
list of targets that will be invoked by the GCC to carry out the desired com-
mand.

A module can be opened by double-clicking on its entry in the Modules browser.
Its own GUI will display. A command may be sent to the GCC by double-clicking on its
entry in the Commands browser.

The GCC Modules

Modules identify themselves and the manufacturing cell to which they belong by name, as
a character string. The name of the cell and the names of the modules can be edited as
character strings within the module applications at runtime, allowing dynamic binding of
the character strings listed in the database to the actual software applications to which they
correspond, running as part of the distributed GCC application suite.

6

All modules have certain common attributes and behaviors. If one runs a module
with the kernel not running, one will notice that the module automatically tries to find the
kernel and bind to it. If the module can’t find the kernel, it allows one to either:

• Try to search for the kernel again

• Specify a host name (either a specific name or * to have it dynamically search
for the kernel running on any local host).

• Run the module in stand-alone mode. For passive modules, like the GccGui
which means nothing without the GccKernel, stand-alone mode is not signifi-
cant. However, for a module like MitGradual ,3 which enables one to config-
ure a problem model and run simulations off-line, running stand-alone without
the GccKernel is useful.

The specific modules created for this release (1.0) are not only functional as mod-
ules of the GCC but also as stand-alone application programs:

• MitGradual: MIT R2R Gradual Mode program

• GccTool: A generic tool controller GUI program

• GccMetrology: A metrology equipment controller GUI program

• GccHistory: A graphic history/plotting program

The MitGradual Module (Figure 7) is a linear-approximation controller. It con-
tains a linear RSM model of the tool, and given metrology, it calculates the next best rec-
ipe. With respect to the GCC, it responds to the message control by programmatically
accepting the metrology and returning the new recipe. The MitGradual module supports
saving and loading of different problem setups. This enables the same software, when run
twice, to be used to control more than one process.

The GccTool Module (Figure 8) is an equipment interface module. Its job is to
maintain SECS communications with an actual equipment controller. For example, when
the GccTool module receives a command from the GCC to download a recipe and start, it
in turn issues SECS recipe download and process start commands to the equipment con-
troller. With respect to the GCC, it responds to the messages setRecipe and start. It also
monitors the process and sends a done message to the GCC when the process is done.

The GccMetrology Module (Figure 9) is also an equipment interface module.
When it receives a command from the GCC to get the metrology, it prompts the user to
type in metrology values which it will then send back to the GCC.

In contrast to the GccTool module which is totally automated, this GccMetrology
module is designed to ask for human intervention. It does not assume a direct SECS chan-
nel to a metrology station for two reasons: (1) it allows us to demonstrate that hybrid
forms of communication are possible, and (2) we do not yet have an automatic data acqui-
sition method from our metrology equipment.

7

It could be the task of an integrator to take the GccMetrology module and actually
make it communicate over the network to the corresponding equipment controller, so the
user would not have to type in values (sneaker net). Nevertheless, the interaction and inter-
face of this module to the GCC would not change.

The GccHistory Module (Figure 10) produces dynamic graphic plots and event
traces of the control history of the process. Specifically, the GccHistory module produces:

• A graphic plot of the inputs

• A graphic plot of the outputs

• A formatted, human-readable trace of the data

• A raw, machine-readable trace of the data. This raw data is suitable for being
imported into another off-line data analysis/plotting package.

The “Demonstration”

In preparing the GCC for a particular cell process, we must (1) add control knowl-
edge (i.e., a control scheme) to the database and (2) make sure the required modules are
present and initialized. When this preparation is complete, we are ready to send com-
mands to the GCC to achieve R2R control.

Adding a Control Scheme. Suppose that we wish to have the GCC respond to
the high-level message planarize . The resultant control scheme might look as shown in
Figure 11, where incoming commands are in bold, and module invocations are in brackets.

Initializing the Modules. The only module we have to initialize is the Mit-
Gradual module, since it must be set up with the appropriate RSM model; that is, param-
eter inputs and outputs, their constraints, model coefficients, current optimal recipe, and
current run number.

Sending a Command to the GCC. The GCC design may be introduced by
tracing the control/optimization cycle of one run for a specific implementation developed
to provide run-to-run control of a process. (Also see Figure 11.) At the beginning of the
run, a high-level process command (e.g., the command planarize(start)) is sent to the
GCC by a process engineer or factory controller. The operator can send such a command
to the GCC by pressing a button (see Figure 6).

The GCC accesses its database and retrieves the equipment identification and pro-
cess recipe. The GCC sends the recipe to the equipment interface module which forwards
the recipe to the appropriate equipment controller which in turn downloads the recipe into
the actual equipment. After the wafer to be processed is loaded into the equipment, the
equipment interface module sends a command to the equipment controller to start the pro-
cess.

8

When the module monitoring the process determines that the process has been
completed, it informs the GCC (e.g., the command planarize(done)). As a result, the
GCC invokes the metrology module, which retrieves the measured, post-process data.
When the metrology is done, the GCC then invokes the process optimization and control
module, which examines this data and attempts to determine a “better” equipment recipe
to correspond to the high level process recipe; i.e., it uses one or more optimization and
control branches (Figure 4) and modifies the existing equipment recipe so as to better
achieve process target values. As the last step in the run cycle, the updated equipment rec-
ipe is stored in the GCC database by a history module and linked to the appropriate high
level process recipe by the optimization and control module.

Implementation Case Studies

The GCC has performed R2R optimization and control in two case studies (1) the plasma
or reactive-ion etching (RIE) process and (2) the chemical-mechanical planarization
(CMP) process.

Experiments conducted for the first case study of plasma etching involved the etch-
ing of a simple 3-layer PolySilicon/SiO2/Si wafer (Figure 12). The experiment was tai-
lored towards maintaining target parameters of average etch rate and over etch depth while
controlling the input equipment parameters of etch time and oxygen flow. Other etch rec-
ipe parameters such as power, pressure, and various gas flows are kept constant. In the RIE
experimental data, both etch rate target changed, and oxygen flow sensory information
perturbed.With open-loop operation there is by definition no capability for compensation
to target shifts or process perturbation. However with R2R control, the system effectively
compensated for process shift and drift.

Experiments conducted for R2R control of a CMP process involved the planariza-
tion of an unpatterned wafer (Figure 14). The planarizer experiment was designed to
maintain target parameters of removal rate and uniformity while controlling the input
equipment parameters of down pressure, back pressure, carrier velocity, and platen veloc-
ity. Other planarizer recipe parameters such as pad age are monitored but obviously not
controllable. Experimental results (Figure 15) illustrate that the controller accurately com-
pensated for a drop in removal rate while maintaining an acceptable level of uniformity.

Conclusions and Future Work

A process-independent controller, the Generic Cell Controller (GCC), has been designed
and developed for the run-to-run (R2R) control and optimization of semiconductor manu-
facturing processes. This GCC design utilizes sequential control and optimization
branches in a complementary fashion. The design has the qualities of dynamic adaptation
to different control processes and dynamic incorporation of third-party software control

9

modules. Thus it is able to be adapted and customized to any R2R control process. A GCC
implementation has effectively controlled two different processes, RIE and CMP, without
any change of code or design, illustrating process independence.

Our research is continuing in the area of module development. We currently have a
multi-branch decision-maker module which has been designed, implemented, and tested
elsewhere.1 We plan to integrate that multi-branch module together with modules for
model building and optimization with our existing GCC setup. We also plan to create a
graphical user interface to the control knowledge, making it easier to program and main-
tain. We are developing a learning mechanism that will use this graphical user interface to
query the operator for the desired action when an unknown event is received. The current
GCC implementation is presently being adapted for transfer into industry.

Acknowledgments

The authors gratefully acknowledge the assistance of Hossein Etemad and Jeff Fournier.
This research is supported by SEMATECH, the Semiconductor Research Corp., and Com-
pugenesis, Inc.

References

1. J. R. Moyne, N. Chaudhry, R. Telfeyan, “Adaptive Extensions to a Multi-Branch
Run-to-Run controller for Plasma Etching”, Journal of Vacuum Science and Tech-
nology, May/June 1995.

2. J. R. Moyne and L.C. McAfee, Jr. “A generic cell controller for the automated VLSI
manufacturing facility,” IEEE Transactions on Semiconductor Manufacturing, May
1992.

3. W. Moyne and E. Sachs, “MIT RbR Control Server,” software system and documen-
tation, MIT, Cambridge, MA, November 1994.

4. R. Telfeyan and J. R. Moyne, “Generic Cell Controller Interface Specification”, Uni-
versity of Michigan, Department of EECS, internal draft May 1995.

5. J. R. Moyne, “Generic Cell Controlling Method and Apparatus for Computer Inte-
grated Manufacturing System,” Patent application filed with the United States Patent
and Trademark Office. Filed, August 1991; Formal notification of allowance, May
1995.

10

FIGURES

Figure 1. Hierarchical model of the automated VLSI manufacturing
facility

Figure 2. How the GCC delegates in-situ and real-time control to
subordinate controllers

Figure 3. Process Independence of the GCC

Equipment

Equipment
Controller

GCC

Equipment

Equipment
Controller

GCC

Factory
Controller

Equipment

Equipment
Controller

GCC

Equipment

Equipment
Controller

Equipment

Equipment
Controller

GCC

Equipment

Equipment
Controller

Equipment
Factory

Process
Factory ∫

GCC
PROCESS 2

Control
Rules

Modules

PROCESS 1

Control
Rules

Modules

Equipment
Controllers

Equipment
Controllers

11

Figure 4. GCC Process Optimization and Control Algorithm

Figure 5. Block Diagram of the GCC

Figure 6. A Cell Represented in the GCC GUI

Data Received
(Metrology, Etc.)

Identify Batch,
Process, Recipe, ...

Data Within
Specified Limits?

Determine Which
Process Control/Opt.

Thread(s) to Use

Statistical
Models

Predictive
Models

SPC Expert
Systems

• •ÿ•• •ÿ•

• •ÿ•• •ÿ•

Determine "Best"
Advice (Weights)

START

START

Error
ReportOpt imiz ation Co ntro l

Feedback Info.
Update Models

GCC
Kernel

Equipment
Module

Model
Builder

GUI

Equipment
Controller

Control
AlgorithmControl RuleBase

System State

Child GCC

Parent GCC

Fuzzy
Logic

12

Figure 7. MIT R2R Gradual Mode Module

Figure 8. GCC Tool Interface Module

Figure 9. GCC Metrology Interface Module

Figure 10. GCC History Output Plot

13

Figure 11. Sample GCC control scheme to service a “planarize” com-
mand

Figure 12. RIE Experimental Setup

Figure 13. CMP Experimental Setup

Figure 14. Experimental data: R2R Control of CMP Process

planarize(start)
[GccHistory getRecipeAndRunNumber]
[GccTool downloadRecipe]
[GccTool start]

planarize(done)
[GccMetrology getMetrology]

planarize(metrologyDone)
[MitGradual control]
[GccHistory storeRunData]

Poly Si

Si O2

Si Substrate

Target Etch
Depth (Approx.)

Plasma Etch

R2R Controller
• Over Etch + Etch Rate Targets •

• In-Situ Process Optimization Models •
• 1st Order Approx. Models (Cntrl.) •

• Generic Cell Controller •

Plasma Tool Controller

Plasma Tool

O2 Flow

Etch Time Over Etch
Etch Rate

Palette

Polishing Pad

Carrier

Wafer

Interconnects

Slurry
Source

Carrier

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
Run Number

Control Action

Removal Rate (Å / min)

 Uniformity (%)

